Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Lancet Digit Health ; 5(10): e692-e702, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37652841

RESUMO

BACKGROUND: Weight loss trajectories after bariatric surgery vary widely between individuals, and predicting weight loss before the operation remains challenging. We aimed to develop a model using machine learning to provide individual preoperative prediction of 5-year weight loss trajectories after surgery. METHODS: In this multinational retrospective observational study we enrolled adult participants (aged ≥18 years) from ten prospective cohorts (including ABOS [NCT01129297], BAREVAL [NCT02310178], the Swedish Obese Subjects study, and a large cohort from the Dutch Obesity Clinic [Nederlandse Obesitas Kliniek]) and two randomised trials (SleevePass [NCT00793143] and SM-BOSS [NCT00356213]) in Europe, the Americas, and Asia, with a 5 year follow-up after Roux-en-Y gastric bypass, sleeve gastrectomy, or gastric band. Patients with a previous history of bariatric surgery or large delays between scheduled and actual visits were excluded. The training cohort comprised patients from two centres in France (ABOS and BAREVAL). The primary outcome was BMI at 5 years. A model was developed using least absolute shrinkage and selection operator to select variables and the classification and regression trees algorithm to build interpretable regression trees. The performances of the model were assessed through the median absolute deviation (MAD) and root mean squared error (RMSE) of BMI. FINDINGS: 10 231 patients from 12 centres in ten countries were included in the analysis, corresponding to 30 602 patient-years. Among participants in all 12 cohorts, 7701 (75·3%) were female, 2530 (24·7%) were male. Among 434 baseline attributes available in the training cohort, seven variables were selected: height, weight, intervention type, age, diabetes status, diabetes duration, and smoking status. At 5 years, across external testing cohorts the overall mean MAD BMI was 2·8 kg/m2 (95% CI 2·6-3·0) and mean RMSE BMI was 4·7 kg/m2 (4·4-5·0), and the mean difference between predicted and observed BMI was -0·3 kg/m2 (SD 4·7). This model is incorporated in an easy to use and interpretable web-based prediction tool to help inform clinical decision before surgery. INTERPRETATION: We developed a machine learning-based model, which is internationally validated, for predicting individual 5-year weight loss trajectories after three common bariatric interventions. FUNDING: SOPHIA Innovative Medicines Initiative 2 Joint Undertaking, supported by the EU's Horizon 2020 research and innovation programme, the European Federation of Pharmaceutical Industries and Associations, Type 1 Diabetes Exchange, and the Juvenile Diabetes Research Foundation and Obesity Action Coalition; Métropole Européenne de Lille; Agence Nationale de la Recherche; Institut national de recherche en sciences et technologies du numérique through the Artificial Intelligence chair Apprenf; Université de Lille Nord Europe's I-SITE EXPAND as part of the Bandits For Health project; Laboratoire d'excellence European Genomic Institute for Diabetes; Soutien aux Travaux Interdisciplinaires, Multi-établissements et Exploratoires programme by Conseil Régional Hauts-de-France (volet partenarial phase 2, project PERSO-SURG).


Assuntos
Cirurgia Bariátrica , Trajetória do Peso do Corpo , Diabetes Mellitus Tipo 1 , Obesidade Mórbida , Adulto , Humanos , Adolescente , Obesidade Mórbida/cirurgia , Estudos Retrospectivos , Inteligência Artificial , Estudos Prospectivos , Obesidade/cirurgia , Aprendizado de Máquina
2.
Soft Robot ; 10(2): 410-430, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36476150

RESUMO

OpenAI Gym is one of the standard interfaces used to train Reinforcement Learning (RL) Algorithms. The Simulation Open Framework Architecture (SOFA) is a physics-based engine that is used for soft robotics simulation and control based on real-time models of deformation. The aim of this article is to present SofaGym, an open-source software to create OpenAI Gym interfaces, called environments, out of soft robot digital twins. The link between soft robotics and RL offers new challenges for both fields: representation of the soft robot in an RL context, complex interactions with the environment, use of specific mechanical tools to control soft robots, transfer of policies learned in simulation to the real world, etc. The article presents the large possible uses of SofaGym to tackle these challenges by using RL and planning algorithms. This publication contains neither new algorithms nor new models but proposes a new platform, open to the community, that offers non existing possibilities of coupling RL to physics-based simulation of soft robots. We present 11 environments, representing a wide variety of soft robots and applications; we highlight the challenges showcased by each environment. We propose methods of solving the task using traditional control, RL, and planning and point out research perspectives using the platform.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA